• NCBS team identifies a tiny molecule in rice that facilitated domestication from wild grass

    The grains we eat, the flowers we cherish, fruits that we use as supplements, all came from plants that have been extensively modified from their original forms in a process called domestication.  Domestication of plants and animals has been the subject of fascinating studies over the last many decades.  Domestication encompasses a broad spectrum of evolutionary changes called as “domestication syndrome” that distinguish most crops from their progenitors.  These changes may increase fitness of these plants under ideal man-made conditions, but likely decrease their fitness in the wild.  Comp

  • The induction of larval resource preference in heterogeneous habitats

    Animals often have to evaluate and choose between multiple food sources in their habitat, and these potentially complex decisions can have a large impact on their fitness. A paper recently published by Deepa Agashe's lab, demonstrates that experience-based plasticity of larval resource choice may strongly impact larval preference and fitness in heterogeneous habitats. The paper was published by Vrinda Ravi Kumar, Swastika Issar and Deepa Agashe, from the National Centre for Biological Sciences (NCBS).

  • Surfing on calcium waves: A larva's journey to becoming a fly

    Eric Carl, in his much-loved children's book, "The Very Hungry Caterpillar", takes us through the transformation of a gluttony caterpillar into a beautiful butterfly. For a scientist, however, this book is a Pandora's box of questions. How does the caterpillar know when to stop eating? Had he not eaten so much, would he have ever moved on into the cocoon?

  • Lost in translation: understanding the loss of bacterial tRNA modifications over time

    Translation, the process by which information from messenger RNA (mRNA) is decoded to build proteins, is a central process to all of life. The nuts and bolts of the translation machinery are among the first concepts biology students learn. Yet, what is not apparent to many is that the components of translation can be diverse across species.

  • To divide or not to divide? That is the question.

    Scientists have long wondered and studied how and when the cell multiplies itself, and how cells change over time. In this context, understanding how and when cells multiply is very important.


    All living cells undergo the same cell division cycle - irrespective of whether they are fly cells or mouse cells. To be effective building blocks, cells must make critical decisions to divide or not. At the level of an organism, these decisions are at the population level, and specific tasks to individuals – like a division of labour, occur in order for the system to function well.

  • What’s all the ‘excitement’ about flight?

    Have you ever wondered how tirelessly the tiny fruit fly buzzes around your fruit bowl? This behavior not only demands tremendous energy but also requires highly coordinated neuronal signaling that enables continuous flight. A recent study from Prof. Gaiti Hasan’s lab has uncovered molecules required in the fruit flies brain that enables flight for long periods of time and helps them locate the fruit bowl in your pantry.

  • A molecular pit crew responsible for refuelling in signalling cells

    Raghu Padinjat’s group from the National Centre for Biological Sciences (NCBS), Bangalore

  • The hairy tale of Protocadherin-15: A study by the Ladher Ear Lab

    You get into a lift at the ground floor and press the button for the top: You notice a gentle tune playing and then realise you are going up. Both sets of information, that is sound and linear movement are perceived in our ears, but how do our ears sense them? It may be surprising to learn that it is just a few, highly modified cells in our inner ear that plays a vital role in maintaining balance and sensing sound.

  • The scent of a man: what odors do female blackbuck find enticing in a male?

         It is midday in mid-April, and the air shimmers with heat. From the shelter of an acacia tree, one of the few spots of shade in the flat, slightly undulating land, a small group of scientists intently observe a congregation of male blackbuck sitting or standing somnolently atop its own pile of odoriferous dung.

  • Defining the brain mosaic in fruit flies and humans

    Similar to a mosaic floor where different patterned tiles come together to make a composite and holistic image, our brains too consist of billions of unique neurons that finally connect together and generate coordinated brain activity. Unlike the mosaic floor, however, which is static, our brains are dynamic and activity in the brain changes based on environmental cues.  So, what makes up the mosaic of our brain? Or, in other words, how are individual neurons different from each other?

  • Pages